

Alexander Nellessen^{1,2}

Andreas Schaefer¹, Anna Martinelli¹ and Per-Anders Carlsson^{1,2}

Chalmers University of Technology, Department of Chemistry and Chemical Engineering

¹ Division of Applied Chemistry

² Competence Center for Catalysis (KCK)

SE-41296 Gothenburg, Sweden

alexander.nellessen@chalmers.se

Surface property studies on modified VO_x/TiO₂ catalysts for the NO_x abatement in mobile sources

Emissions of nitrogen oxide gases (NO_x) originating from combustion processes attract significant attention due to their role as a major source of atmospheric contamination, along with health risks and a series of environmental issues.^[1] Since combustion processes in mobile sources (e.g. heavy-duty vehicles such as trucks or ships) are expected to be used for a foreseeable future, many efforts have been invested in the development of suitable deNO_x technologies. The selective catalytic reduction with ammonia (NH₃-SCR) is one of the most established technologies, where the formed NO_x gases are catalytically converted into harmless nitrogen and water. Vanadium oxide-based (VO_x) catalysts are one of the most commonly used catalyst types given to the low material costs and high chemical resistance (such as sulfuric compounds).^[2] However, the application in mobile sources provokes several challenges, as the catalyst has to work under dynamic conditions in a broad temperature window. Both low-temperature activity and stability at high temperatures are required.^[3] Since the operation temperature in automobiles varies between ambient and maximum temperature, the effects of temperature and time, are weighted together in a defined aging procedure considered representative of the application at hand.^[4] Promising solutions have emerged with the modification by metal oxides to stabilize both the active vanadium oxides as well as the TiO₂ support.

For a rational design of a new generation of NH₃-SCR catalysts, a scientific understanding of the fundamental limitations for catalyst activity, selectivity and stability must be achieved. Our work will present systematic studies of the surface properties on modified VO_x/TiO₂ catalyst in terms of structure, the interaction between the support and additives as well additives and vanadium with the aid of various *ex situ* characterization techniques such as N₂-physisorption, temperature programmed desorption, XRD. In addition, the catalysts were thermally treated to mimic a long-term use and to study the respective impact. Infrared spectroscopic methods such as Raman and *in situ* DRIFTS allow the identification of surface vanadium oxide species and band assignments for the surface hydroxyl groups along with the formation of adsorbed surface species of the main reactants (NH₃, NO). The deconvolution of the NO_x adsorption spectra gives insights to the distribution of the surface species among the samples.

References

- [1] Radojevic, M., Environ. Pollut., 102 (1998) 685–689.
- [2] Lai, J.; Wachs, I.E., ACS Catal., 8 (2018) 6537-6551.
- [3] Du, X.; Gao, X.; Fu, Y. et al., J. Colloid Interface Sci., 1 (2012) 406-412.
- [4] Madia, G.; Elsener, M.; Koebel, M.; Raimondi, F.; Wokaun, A.; Appl. Catal. B., 39 (2002) 181–190.